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ABSTRACT

A numerical method for boundary value problems for quasilinear systems of

singularly perturbed ordinary differential equations is presented. The method

is based an collocation with polynomial splines. The stability properties of

the associated difference operator are examined and a stepsix. algorithm to

achieve a certain over-all accuracy is developed. The number of gridpoinfts

required by the algorithm is estimated.
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SIGNIICIC3 AID MXPLAN&TZON

Many high-order discretizsation methods for the solution of two-point

boundary value problems for systems of ordinary differential equations are

already circulated. However, these methods can behave quite poorly in case

V the solution has large derivatives, unless severe restrictions on the mesh are

imposed. The reason for these restrictions is mainly a stability problem.

VIn this paper a strongly A-stable difference method based on polynomial

collocation is developed for a class of quasilinear, singularly perturbed,

two-point boundary value problems. Many problems of practical interest are

included in this class, for instance the nonlinear deformation of thin beams

or one-dimensional models of carrier transport in semiconductor devices. The

method combines the advantages of having the same stability properties as the

lower order methods which are used already, with the high order of convergence

of collocation methods. It is shown that the number of gridpoints (andJ therefore the amount of computing time and required storage) is of the same

order of magnitude as the one required for solving unperturbed problems.
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CHRZSTIAN RINGiUOW

1. Introd ctiam.

We consider quasilinear system* of singularly perturbed O.D.. 's on the interval

(0,1) of the form

F (y,z) -0 . b (y,=) -

t (ay'ct.gs - f(t,y~z.c)\(1.1) F (y,a) ka(.--q /,:6

(l'(t,g) - g(t,y,x,e)

b (yz) " b(y(O,),y(1,), (0,t), u(1.el,c)

y and 2 are vectors of dimension n and m. The prime denotes the derivative with

respect to t. (1.1) is quasilinear in the following sense:

f(t.yZ,C) - f (t,z)y + f 2 (tyOZC)

(1.2)
bWyopyltz 0 1 :1 ,6) b1 )X# yo (2 y0 1 1 s 1 1 3f 2

f, and b, are matrices of appropriate dimensions. we assume that the derivativesf 3Yd ar uniformly of order e for y,z,yo~y1 Zo,Z1 in any bounded domain of the

appropriate real spaces. For f21 b2  and g there exist asymptotic expansions In poVers

of C. The nxn-atrix f, is a block-diegonal-matrix of the form

01.3) f I(t.2) + 1 t:

The square-matrices f and f+ are of dimension n- and n+ (where n. + n+ n

holde). f1  has only strictly stable and f2 has only strictly unstable *igenvalues for

Sponsored by the United States Army under Contract No. DAA029-80-C-0041. This material is
based upon work supported by the National Science roundation under Grant No. 14C-7927062,
Rod. 2.
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t • (0.11 and z in a certain domain D of SP (defined more precisely in chapter 3).

Prom the analysis of singular perturbations (see c.f. Hoppenstaedt (1971), O'Malley (1975),

Rckhaus (1979), Flaherty and O'Malley (1980) and Ringhofer (1981) we know that under these

amsumptions we can expect a smooth solution in the interior of [0,11 while at the

endpoints boundary layers will occur. Therefore the usual discretisation methods are not

applicable unless we impose conditions on the mesh. (See c.f. Ascher and Weiss (1980) for

the behaviour of collocation methods of Gauss, Radau and Lobatto-type.) The standard

theory for discretization methods for general grids is not applicable unless the maximal

stepsize is smaller than e. Flaherty and O'Malley (1980) avoid this difficulty by solving

only the reduced problem (which is independent of C) instead of solving the full problem

(1.1): As C tends to zero the solution (y,z) of (1.1) will converge to a function

(y(t),z(t)) uniformly in compact subsets of (0,1) with a convergence rate

O(W). Obviously (y,z) satisfies

"( (1.4) 0 - f(t,y.,O , z" g(ty,z,O)

To represent (y,z) as the solution of a boundary-value problem (the reduced problem) we

need m boundary conditions for the equation (1.4). In the quasilinear case this can be

done by a "cancellation law" (see Flaherty and O'Malley (1980)). In compact subsets of

(0,1) this gives the solution (y,z) up to the global discretization error we make bi

Iapproximating the reduced solution and a term of order O(C). Inside the layer this gives

us no approximation. Using some information about the analytical structure of the solution

we construct a method which is designed especially for problems of the type (1.1): It

shall solve (1.1) directly. So we need not compute the boundary conditions for the reduced

problem numerically. The amount of labour (i.e. of gridpoints) which in required to obtain

a uniform approximation of the solution on (0,11 shall be "reasonable" (that means not

proportional to r-). If we use a general (so for instance a uniform) mesh with maximal

stepsise R > > C the approximation shall be as good as the one obtained by solving the

reduced problem only. The solution will consist of a smooth part and two *layer-parte"

exponentially decaying from the endpoints. More precisely we have

-2-
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i (y" and as eir first : e :::: :+ : y::can cdet

z(t,C) - s(t) + 0(c)

(y- and y + are the first n_ and last n+ components at y.o and v decay

expontially as their arguments tend to infinity. u(I) behaves roughly like the solution

Sof

(1.6) € €'(t.) - A r (t,), €( 0) - 1, Ne A < 0

a diecretixationmethod which gives us a good approximation of y" for an arbitrary mesh

should also be able to deal with (1.6) on a uniform grid. ;e now compare the behaviour of

the Box-scheme and the implicit Ruler scheme at the problem (1.6). gs have

(1) ((1) 1 (2 ) (2) (2( £ + 2i r.(1)+.(l), C . +l"Ci (_12)b 2 ". i L+I
I  

h AC +I

(1.7)

(1) 1+ &)i(I _ )-i _ (-)
i ,
- (2) - h-i

C 129 2C

(1.7) shows that only the implicit Ruler scheme gives us a good approximation of the

solution. The reason for that is, that the growth function of the box-scheme

(l+1)(I-Z) "  
tends to -1 as z tends to infinity whereas the growth function of the

implicit Ruler scheme (0-) 1 
tends to zero. This is the basic idea of a method

developed by reiss and Nichols (1975)t They use the implicit Ruler scheme for y-. Since

++
the eigenvaluee of f1  are strictly unstable. they use the explicit 3uler-shm for

y * For a they use the Box-scheme. We extend this idea to higher order methods and our

approach for this extension is polynomial collocation. For a positive integer q we

choose q+l reference points 0 - u0 4..- Cu - I on the interval (0,11 according to

(.6) u - - 0(1)q

For a given mesh t- ({0 t C..< t 1, V - max(tL+-t )) we choose the collocation

points tij according to

~-3-
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1.9) tti -t i +hiu hi :- ti+1 - ti 1  t i 01)q, ± - 0111-1

Note that tiq ti+ 1* 0  holds. On the subinterval (tioti+,) we now use for y" the

collocation points til,..,tiq. For y Ve use ti0l...ti,q.1. For x we use

ti0,..Itiq. For q - I this gives the method of Xreiss and Nichols except that we use the

trapezoidal rule for a.

We show that if the reduced problem has an isolated solution, the operator built by

Fch and the boundary conditions is stable in the sense of Keller (1975) and that the

stability constant is independent of C and the grid T.. So if we use a mesh selecting

strategy to achieve an over all accuracy 6 we only have to control the local discretiza-

tion error. We develop such a stepsise algorithm and show that the amount of gridpoints

required to achieve an over-all-accuracy 6 is essentially independent of 9 and
1

proportional to 6 q. This is comparable with the amount of gridpoints our method would

need for an unperturbed problem. If we do not use a stepsize algorithm we can show the

following result: For an arbitrary mesh we define the global error eh by

% a (yh - y(t heC), zh - Z(the )) where (Y(theC), z(thC)) is the solution of the

continuous problem restricted to the grid T .  Then we have

t t -1eIs 1 c[EH q +Hq+'+E+exp(
- 

)-tL+exp(A tl+1-0

(1.10) 1-1 ch -1 N-I Kh -1
+ A I 1+-C ) + R 0 +-- 1, j - W1), i-o(,-1

r-0) r-i+1

for some positive constants c,x,A (here H denotes the maximal stepsize). So away from

the boundary we have the normal order of convergence O(H1q+1) of our method plus a term of

order 01). Thus the approximation is as good as if we had solved the reduced problem

only.

This paper is organized as it follows. In chapter 2 we define the collocation scheme

' and introduce some basic notations. In chapter 3 we present some analytical results of

* singular perturbation theory. For the proofs we only refer to the literature. Furthermore

-4-
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we impose the main assumptions to be satisfied by the continuous problem. Zn chapter 4 we

state our main results and explain them in a more detailed manner. Zn chapter 6 we prove

them. Zn chapter 5 we demonstrate our method on a model problem where the continuous

solution is known.

2. lbe method.

In this chapter we define the collocation method and introduce some basic notations

which we will use throughout the rest of the paper.

(2.1) Definitions We call a set of q+1 points 0 4 u 0 < uI <..< -1 U 1 a set of

reference points in the unit interval.

(2.2) Definition Given N+1 gridpoints 0 = to <..< tv - I and a set of q+1 reference

points we define for each subinterval (ti~ti 1] q+1 collocation points by

( 12.3) tij :- ti + hiu j  hi see ti+ 1 - tie j 0()q, i - 0(1)N-1
(Note thee. rio " tI_1,q , t i holds.)

(2.4) Notation: We denote the mesh consisting of the gridpoints and th-e collocation points

aand Its mximal stepsize by

TH s- (t~ j - 0(1q 0 I - 0 )N-1, H - max h

i

(2.5) Definition: For a given mesh TN we define the scalar (vector-, matrix-) grid

function ah  an a sequence of numbers (vectors, matrices) by

% s- {xij, J - 0(1)q, i - 0(1)W-I, X iq = x +1, 0

(2.6) Definition In the space of grid functions we introduce a norm by

1xhJh - max(x i. j - 0(I)q, i - O(l)N-1)

where I-I denotes the modulus or the max-norm in VP or the matrixnorm introduced by

the max norm.

(2.7) Notation, We denote the first n_ components (rows) and the last n+ components

(rows) of the vector (matrix) x with x" and x
+ where n and n+ are the dimensions

o+ n

of f1 and f1 in (1.3).



(2.9) Definition: To apply a (polynomial) collocation method one generally seeks a

polynomial spline function, which satisfies the given differential equation at certain

points (the collocation points) as well aa the boundary conditions. In order to

approximate the solution (y(- (y-,y )T),z) of (1.1) we construct a vector-spline function

(py,p.), py- (p,pT) which satisfies:
Py y

a) P.

0) and py + re polynomial@ of degree qi Pz is a polynomial of degree q+1 in each

subinterval (ti, ti+ 1 ] •

y) To generalize the implicit and explicit Rler method we request that p; satisfies the

differential equation at all collocation points tij except the first one in each
+

subinterval and py satisfies the differential equations at all collocation points except

the last one in each subinterval.

C(p ) - f (tp p,,C) for t - t j - 1(0)q, i O(1)N-1
(t 2.9)

C(p )' - f+(tp yp,,C) for t - t j - 0()q-1, i - 0(1)N-1
py y Li

For z we take all q+1 collocation points except for 2 subintervals . For reasons which

will be explained in chapter 6 it is necessary to modify the method used for s in order

to obtain a higher order method. Given a mesh TH  we assume, that 1, atepo hi on theIleft hand side and 12 steps on the right hand side are of order O(e) (where we also

allow 11 and 12 to be zero):

hi - 0(c) i - 0(l)I 1 - 1, i - 12(1)-1

1 2

For the subinterval [lft 1  +1] we take the collocation points t1 lf-..*** (as for

p). For (t".I2 _l,.1 2 ] we take t. 1 2.1,0.... Ut.12.1 q - s so we haves

.-

i -6-



I (I)q if I

-g(t.Pp. ) for t to. j0( )q-1 if i -U-1-

-001)q eIs*

mor our analysis it will be convenient to rewrit (2.4) into a diff erence scheme. It we

denote the values of P7  and Pg at t -tij by Y and si (2.4) can be written

(aee Weiss (1974)) an

(2.5) C Yi - w'O f-(t a ~~ukCI
k- hi

Li -5 LO f(t

h i k 10', ioOkzk

j- 10i)q, i - M 1

~) (uk- 0  a, w(s) (uk-ua)

- (a.. wc(umu) 3k= fOj ce*u% w'(uk)( -uq)

0 Vs

v(S) S- (8-u0) * (a-u

*(2.6) Notation, We define the discrete operators Dh. 8~ 5,% by

-7-



(Dh~~J h

x -x1- ! -£

(Shxh)i, - j 
w ik A (Sh )Lj .0 Vk Xi k

(Soo
- S~h i £f -

S (Sh%)j if I - N-12-1

w 0 x otherwisek-Oj k At

k 0

With this notation the discrete problea can be written as

(2.7) F ch (Yhr z h

SDhYh - Sh f (thfyh'zh,)

(Y + + f+(t*A )
ch (Yh'zh) ' E Dh Yh Sh f th Yh zhC)

DhZh -
8

h q(thyh#zhC)

(2.89) Ramrk To this point we did not restrict ourselves to a certain set of reference

points. A natural choice would be Lobato-points in order to achieve the highest possible

order of accuracy for z. However, for the rest of this paper we restrict ourselves to

equidistant reference points.

k -wi-8-
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3. Analytical results and main assumptions

Quasilinear singularly perturbed b.v.p.'s of the form (1.1) have been studied by

several authors (see c.f. O'Kalley (1974), Flaherty and O'Malley (1980), Howes (1980),

Ringhofer (1981) ). In this section we present their results in a manner which is

appropriate for our purposes. One can find the proofs either directly in the above

mentioned papers or can prove the results of this section analogously using the special

structure of problem (1.1).

The solution (y,z) of (1.1) has a uniformly valid asymptotic expansion of the form

0(3.1) y(t,C) - W (.(t)+ I.(y) + v j( L)O

j 0~ j I.

Swhere pi,vitait, i are exponentially decaying as their arguments tend to infinity. (we

call a function #(T) exponentially decaying if it satisfies |*(T)| x(c2T forc1 exp(-c 2 T)fo

positive constants c1  and c2 .) To derive this expansion it is necessary to define the

reduced problem. This is done in Flaherty and O'Malley (1980) for the case of separated

boundary conditions. In our case we proceed analogously.

(Y0"Z0),PO and v0  satisfy

(3.3) 0 = f(tyo,zo,O), z = g(t,yO,zo,O)

(3.4) a CrO't) " lO-(O)P~
)

(3.4)oL0 f'(0,1(0))*1i (T), v0 () -f00,z1))V()

(3.5) b ;0;()+ b 2 (0,#;o(0),; 0 (1),0) . 0

-iSince V0  ndW must decay exponentially 1100 - 0, 0 1 - 0 mst hold. We split

L,! up bI , into 0 (
( )p bi bnt

( 13.6)1) bZo&Zl .U ) b 1 1 (z 0 ,x1) ( + b12 )(Zoz(" Yl Yl Y,

-9-
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(mere y" and y+ are defined as in (1.5).) So* bi1  and b92 are (n+m) x n

matrices. We assume that bil has maximal rank in a domain of R2m  containing

(z0 (0),z0()) and that there exists a regular (n+)x(n+m) matrix W(20 ,z I ) such that

(3.7) W~z0.Zl)b 11 (s01z1 ) - (V(: 1 z 1

holds where V is a regular nxn matrix. In that case (3.5) is equivalent to

(3.8) W (;0(0),Z 0 (1))(b ( 0(0), 1)) O) + b2 0,0;0(0),;0(1),0)) 0

(3.9) U ) -V (z10),;(1))W'l(0).Z(,))bly(0).(,)1.l)uO)

(Here W" and W+  denote the first n- and the last n+ rows of w.) (3.8) together

with (3.3) gives the reduced problem. If the reduced problem has an isolated solution we

can show the uniform validity of the asymptotic expansion (3.1), (3.2). This leads to the

following assumptions: There exists a domain D of R' so that

(3.10) HI: f,(t,z) is a block diagonal matrix. So

f1(ltx) -
flf;(t) +

holds. There exist positive constants 1 and i+ so that all eigenvalues X of the n

dimensional block f1 (tez) satisfy Re A < -X and all eiqenvalues of the n+ dimensional

block fl(t,z) satisfy Re A > for all t e 10,1] and z e D.

(3.11) H2: There exist matrices W(zo,z, ) and V(z0 ,z1 ) as defined in (3.7) for all

z0,z1 e D.

(3.12) K3: The reduced problem (3.3), (3.8) has an isolated solution (y0 (t),z 0 (t)).

S0 (t) lies within a compact subset of D for all t e [0,,].

(3.13) H4: f,g, and b are as often differentiable as necessary with respect to all of

their arguments.

-10-



Under these assumptions the asymptotic expansion (3.1), (3.2) is uniformly valid.

(3.14) Notationt For the further we denote with (Wb)(y,z) - 0 the boundary condition.

W(a(0,€), z(1,C))b(y(0,C).y(i,S),Z(O,6),z(l,)) - 0

* 4. Main results

We first show, that under the assumptions (3.10)-(3.13) there exists also a solution

of the discrete problem

(4.1) h(Yhz = 0, bC(yhzh) = 0

and this solution is stable in the sense of Keller (1975). We start with constructing a

uniform O(c+H) approximation of (yh,th): We define the discrete reduced problem by

(4.2) R 0. bR(yh.zh) 0f
h 

y
h'zh) h =0

(rP)~ = ( :0 j - 1(I~q, i - 0(1)N-)

b(Y - W2 (zO0Oz, 0 )b(y0 0,YN0 ,zQ0 0,#0,)

Because of hypothesis (3.12), (4.2) has an isolated solution h,;h) (see Keller
S0 0

11975)). We now define yhpyhzh by

(fS+ (f + y

WDhyh Sh (f(th, h);h) hyh h

- -v(,fz)-
(43)+ -V( ;00,zH0

) ' 
WI(;00,;N0)b(F00,YM0,Z00,;VO,0)"

pohiato o te sh Zh "

0 00
(yhzh) &s "'ifor% O(C) i~oiaino h ou~n(hZ)o 11) oso

' *' the existence and the stability of (yh,zh) we need that the linearization of the operator

0 0

built by FCh together with the boundary conditions (3.14) at (yhzh) has an inverse

bounded uniformly in C and R. This gives a linear difference operator (L D) of the

7,197



form

q- - -A 1-y- + A12 -Z
h h~y Sh h 7 h h hL

(4.3) L (y + +( 11 + + 1(A11
(4.3) Lh'h'h 

"  
O'Dhyh -h (h Yh + (h+h

'

0/* o_ 21 322 , -Dhsh " Sh[Ah Yh 
+ Ah sh

11.. + )I 1 + B U 'r +

(4.4) )(yh,(,h
) 
-)

\ (Yoo.o.'oo.'..o)'

Since y will exhibit a rapid transition at the .ndpoint the matrices wil consist

of a umooth part and a part exponentially decaying sway from the boundary i.e. they will

satisfy

Lb . Lb + 1b, iDh\,*h c 1 ,k,1.1,2, A h 0

i21 oh N-I Ch

I 1 + - + I 11 + -1, 1-1.2

(4.5)

12 i-1 , cr N-I + r -1
I(A <) c (1 + )-1 12 '

ij - I(Aj)I (1

j - O(1)q, i - 0(1)N-1 .

Becaus B is the linearization of the boundary conditions (3.14) B will satisfy

det( 1 1 ) + 0.

For the problem

(4.6) LCh(yhzh) - &h, B(yhz) -

(where #h is a vector grid function of appropriate dimension and e e R n ) we define

the reduced problem by

(4.R R
-h( h * * Ry~h-

"i (4.7) #(h, h ' B .. yh.%) - 2

-12-
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(4.8) R ( -Bh +-[(A 
1
1) +y~ ++(A1+Z

hz- 8 h!A; Yh - A h sh

(4.9) BR(Y h -z D(y OOyNu,z,%)

2denotes the last a components of 0). For the so defined linear operator we have

the following stability result

(4.10) Theores: Let L Be R hDR be defined as in (4.3), (4.4), (4.8), (4.9). If there

exists a constant a,, so that Ln satisfies

(4.11) 1(yhIsh)Ih c,(IL R(yh zh)1 +1BR( M

then the problem

(4.12) L rh(Yhpzh) B. he Is

has a solution (y~h for all vector-grid functions 4.and all vectors B.There

exists a constant c 2  independent of e so that (Ylh satisfies:

(4.13) 1 (yh'% h 1
hc2(V*hh+

Since the continuous reduced problem has an isolated solution the linearization ofI(4.14) F Ch (Yh' (b)(v h Ish)

satisfies the hypotheses of theorem (4.10). (Here (Wb)(Yhlzh) in defined analogously to

*3.14).) using theorem (4.10) we can show the existence of a solution of (4.1). Moreover

the operator defined by F hand the boundary conditions Mb is stable in the sense of

t Keller (1975) in a neighbourhood of (Yhzh) of (4.1). The neighbourhood and the

stability constant are independent of C. So we have

(4.15) Theorem: if the continuous problem (1.1) satisfies the hypotheses in chapter 2 then

there exist some positive constants Co.%0 so that (4.1) is solvable for all e < (

and H < No. The solution (Yh'zh) of (4.1) satisfies

(4.16) *1''y h - (y~*~E , c

for som positive constant c3  independent of C. Here (ya are defined as in

he
-13-



(4.3). The stability-inequalLty
11 22.1 1 22

, - h4 C h ,%-gh-h)'h +
(4.17)

I 1 7 2
+ I(wb)(y - (Wb)(yh, zh )I

is satisfied for all Lst), i - 1,2 satisfying I(Yh,ah) - (yh' ) h < p and all

8 < go,0 C C 0 O .

0 0

since (yhsh) in (4.3) is an 0(c) approximation of (yhxh) the global error

((yhh)-(y(th,), S(thc))) is up to term of order o(6) given by the difference

0 0

between (y hh) and the 0(1) terms in the asymptotic expansion (2.1), (2.2) of

(y(t,C),Z(t,6)):

J4.18) Theorems Let (yo,zo) denote the 0(1) term in the asymptotic expansion of

(y(t,),(t,e)). Then there exist positive constants c and K so that

I(Yoft± ,lbo(tij,)) - (y0 .its 0 )1 < (Hq +l +

I 1 I .) 1 + C r + exp(-
r-O r-+ 1

tI -1

exp(Y+"

holds for all R < H0  and c < c0 where y. and y+ are the (in modulus) smallest real

parts of fI(0,a(0)) and f(10,30)).

From Theorem (4.18) follows immediately:

(4.20) Theorems Let (y(t,).s(t)) and (YhSh) be the solutions of (1.1) and (3.1).

Then there exist positive constants c6, Y and C so that

Elylti ),Z(ij)) - (yij,zj)I < c6(q+l + • +

1- : 3h -1 Kb -1

+ (1 IM -1 r)...L) 1 ( n) xp

t -1

exp(O+ -

holds for all • 4 e and all gride s R  with K < go .

-14-



* r
Avay from the boundary ve will have an approximation of order 0000+) for an

arbitrary (so for instance also uniform) mesh. So in this cas we have the order of

convergence which ve would obtain by solving the reduced problem plus a term of order

0(c). In that sense our method is equivalent to solving only the reduced problem except

Sthat vs need not ompute the boundary conditions of the reduced problem. We now consider

the case vhere ve vnt a better approximation than the one we obtain by using an arbitrary

mesh. This is of some interest if either 6 is rather big (lets may e - 102) or if ve

are interested in the solution inside the layers.

If we can show now that (y(thC),z(tht)) (the restriction of the exact solution
0 0

(y(tt),z(t,s)) on the mesh TH ) lies within the ball R~(yhmh). theorem (4.15) tells

us that we only have to control the local discretization error to obtain a uniform approxi-

mation of the solution. In other words if ve choose the mesh T. so that

IF Ch( Y(th, C), 2(th,€)) 1

holds ve have I(yh (y() - ( c),z(th t)) t - 0(6).

(4.22) loomes Let the local discrtization error (I A) be defined by

(4.22) (I,,L) F,h(y'th , *),zCth, ))

where (y(th c),z(t h,)) denotes the restriction of the solution of (1.1) to the grid

TN . Then there exists a positive constant c7  such that

(4.23) + :!, :: 1 e 4 (......L + ( ) t-' - 4+

exp ( )

holds for O()q, i - 0(1)1-1 and soe Z, Ctiti+ 1 I"

go if we want to guarantee thath - 0() holds for a certain desired

acculracy S we have to choose the mesh T3  according to

; -15-
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1 1 1 1 At

h ( {q q, 6 q+1, 
6 q cexp(- -), 6q+

(4.24)

(q+I exp ( * qC C exp( (q+l)C

If we choose TH according to (3.24) we can show that I(yhzh)-(Y(theC),z(th,£)t O

O(E+6) holds. Therefore (y,z) lies within the ball with radius 0 and center (yhz)

where F is stable (see Theorem (4.15)) if only C and 6 are sufficiently small.
ch

Applying Theorem (4.15) gives

(4.25) Theorem: If TH is chosen according to (4.24) then there exist positive constants

Cs3 #0 and 45 so that

(4.26) I(yhz h )-(y(t h E ),z(t h , ) Ih ( c86

holds for any 6 < 60 and c < c0

To construct the mesh TH we proceed as it follows:

I i

Step 1: Starting with h0  we choose hi according to h, I min {e6i exp(-- €r)
qC

-- x-t q+--

F.6 q71 exp as long as h. < holds. (For a reasonable 8> c 1

(qc i

6q + 1 < 6q e
q  

holds.)

Step 2: Starting with h,._ we choose hi  According

_ (t

hi I min (C5
q 

exp 6
q + exp (q+l)

as long as h. < 6q  
holds.

Step 3: Por the rest of the interval choose hi

"i Therefore it is necessary to know the constant _ and X+ which are the smallest

moduli of the real parts of f1(0,z(0)) and f (1,Z0)). These can either be computed by

%,!O-16-

* I

I;. ______!A



solving the problem on a uniform much first or estiates for them can be obtained, if on*

urn. a continuation method.

an immediately arising question iot Now big is the additional amount of labour

Inside the layers? That means Pow many grid-point, do we need in steps I and 2? What

one would like to have is an estimate for the number of grid-points, which is independent

F of C. Unfortunately the number of grid-points required to achieve a certain accuracy 5

tends to infinity as c goes to zero, but the growth is so slow that for reasonable ranges

of C and 6 it appears to be independent of C. more precisely we have

(4.27) Lema Let k(8,A,y,C) denote the number of grid-points produced by stop I (or 2)

(so X either equals A_ or A +). Then we have

(4.29) IN(6,A,q~c1 I N(58, ,q, C2 1 4 3

for 6,k,q and C and e£2 satisfying

xq i3-s-

Furthero

hold0. Remarks The estimate (4.29) is not sharp, but together with (4.20) it shows, that

for reasonable choices of 9 and & the amount of additionally needed grid-points is of

the msm order or magnitude as a q-th order collocation method would need for on

unperturbed problem.

5. numerical RXAMP10

We now Illustrate out results with a third order quasilinear model problem where we

know the exact solution. For the computations a modified version of the packages WS0aTO

and DOLVBLOC (see de Door-Neiss) (0976)) has been used. We consider the system

Fl -17-



e;m-(-ye 2 2+" *t 5 C2 at )(YgS2-t 5 0 t(y2-5 *t ))

(5.1 - (8-aye~ 2 +ets a t )(y2.s*mt)+stt

£- -(gj.*t)(yg-y2 -t+S**t)

yI(O.O)4 2 (0, 02 (0, 4-9- a - o

(5.2) Y1,e)4Y 2(1, e)+z(i,c)-7.e- 0

* ~~Here the matrix fift~s) is 1E)31. 2 of th form

*(5.3) f (t..a) ca-

and we have the reduced problemt

(5.4: o - yl+ -*t 0 - 5;s'; -*t;I*

(5.5) ;0I) + ;1(l) - 2e

which has the solution l-et .Y2 - 5e , z 1 e t

(5.1), (5.2) has the solution

Y, .0 + exp(- 3 -+ Cexp( )
C £

(5.6) Y2 5e0 + tx(

3=t 1=t
z-0+ Cexp(

We solved (5.1), (5.2) using the mesh selecting strategy (4.9). We varied the desired

*accuracy 6 by halving 8 +Istarting with - ~.Thus the maximal error should
2

decrea2e lk Iq.we varied C from 10-2 to 1-0in steps of 10-2. By Varying

C for fixed 8and q the norm of the errors differed by less than 1%:

LL



Maximal errors of:

1

aq1 2 3 4

.25 .11 .81B-2 .643-3 .3=3-4

.13 .633-1 .213-2 .013-4 .292-S

.633-1 .353-1 .543-3 .1 3-4 .123-6

.183-1 .143-3 .133-5 .133-5 .733-6

Note that the error-constanta are decrea ing for increasing q. (go for inatance for

q - 4 the error constant is 0102))* To achie e the accuracy the following amounts of

mueepoints have been requireds

Roquired mshpoLntss

aq  1 2 3 4

•2S 17 25 33 41

.13 26 43 58 74

.633-1 44 77 109 140

.313-1 78 144 206 272

Go for a fixed q the mmber of required aeshpoints grom like ai. Varying C from

10" 2  to 10-G the amount of grid-points for fixed q and 6 varyled only by t 1.

Now we solve (4.1), (4.2) using a unLfoz% meeh (hi - N. I - 0(13I-I). Because of the

theory in the preceding chapter we expect an error of order (1 1q +1+) Ay from the

boundary layers. In the next table the norn of the error at t - .5s listed for

q 3.

.!
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6 .1 .Sz-1 .253-1

.13-2 .583-3 .553-3 .513-3

.13-4 .533-5 * 63-5 63-5

.13-6 * 53-6 . 43-7 .572-7

So we "a that the error in of order C independent of H except for c " .13-6 and

H - .1 where cHi
q +  

> c holds. (c is the error constant of our method for q - 3.)

6. ProofSs

To prove Theorem (4.10) we first need some auxiliary results. We start with scalar

constant coefficient problems and estimate the growth function of the method we use for the

component y in (1.18)t

6.1 Len as Given the complex numbers x and z and the vector e - (el *..eq) the

solution x - (N1t... Oxq) of the system

xj" Xo+ wkX.(+e) , j1(1)q
j 0 k-1I k

(6.2) satisfies
! x) - (zlx 0 + (slze .

x -Y + TW

0 are vectors of dimension q. y and the components of 0 are rational functions

of z. For q - I(1)10 there exist angles satisfying 0 ( B ( and positive
q q 2

constants Cq such that

(6.3) Iy()l, Is a),(zI, Izy(S)I, t0 Iis)t (c
j q

holds for a in Sg - (siRes < 0, la z(Re )-I ( tan ) and 1j l)q. yq satiefie

off Iyql < I in 8q and Y,(O)-1.

" 
"
. Proofs (5.2) can be written in the form* .1x -

x - o + g'x + a

where i denotes the vector (1,.., 1T and 9" the q x q matrix (w ,,i.,alq). if

-20-



we solve this system by Cramer's r=o and look at the involved determinants as tunctioas

of a we can write the solution ( in the form (6.2). The yj and Sj turn

out to be rational functions where the degree of the denumserator-polynmial is q - I and

the degree of the denominator polynomial in q. Therefore they behave like s-1 at

I9

The growth functions y have been analysed numerically by Ueberhuber (1979) and are
rq

less then I in modulus within the sector S

(6.1S) Leas Let all eigenvalues X of the ova matrices h lie within a compact

subset of the interior of % and satisfy Re A < -< ( 0 for a positive constant . Let

IDhah c 11  hold for a positive constant 1li. Then the solution yh of

gyh'h %h)fh , yOO0 u satisfies
(6.16)

lyhlh C c12(al + Ifhlh)

for some positive constant c12 independent of C. (Here yh and fh are vector grid

functions of dimension n.)

Proof: We rewrite (6.1G) inI(Dhyh)Lj - aiO(Shyh)ij + hi(Sh((DhhY)h))ij + fij j - 1()q, i - 0(1)3-1

Since Dh~h is bounded we get, by using Leams (6.1)

T:.., q(j A10 'l + 1qk(t AiO) -hi k' + O(hit hh)
h + k h

Bere the rational functions y and 0 are applied to the nonsingular mtrix -A in

the usual manner i.e.

yq( - o) I r Yq(' 1)(Ax -JL0)ld

whbere r is a closed curve in the complex domaLn and all eLgenvalues of ALo lie within

r. (l106 C-f. Danford Suhurts (1157).)

-21-
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. N rhr -'
ly I0( I e + const( * I - ----L .iO 1-0 r-:S

(6.17) - cyh 1-1

+ I I (I - - ) lh'h+0(B h))
J-*+1 r-J+l

icyh -1 -1 r
by estimating (I X X) exp( -) with mome suitable constant v ve got

N N iy lh N h K - r h tN (t -)
(6.16) 1 1 (1 - -- ) , C exp( w(t.-t )):, C 110 J (- y( -)as

i-0 -j Jo N j

Since the integral is bounded and the other sum in (6.17) is geometric we get the desired

(6.19) Leimaa Let Ah  be a nxn matrix and fh and fh be n-dimensional vector grid

functions. Let Ah  satisfy the conditions for the matrices Ah  in Lems (6.15). We

assume that

IDhAlh ' c 3 , IDhfhh < c13

(6.20) 1 h r -1

If i' 4 c14 In (1 + -) j - 1(1)q, i - 0,1,2,...

hold, for sme positive constants c1 3 1 c14 and K. Than the solution Yh of

(6.21) DhYh-Sh(Ahyh+fh+f) - 0, Y0 0 - a satisfies

-i h -1-(Alf)h 4 I( -

(6.22) Yh -+ Yh + 0(C), j 0 c15 r0 (1 +

J " (1)q, 1 0(1)B-1
-1

for ome positive constants c1 5  and a where a < min(rc 12 ) holds. (Bere 012 is

defined as in Lena (6.15).

Proof, We define Yh and uh by

* * 4 . -y
(6.23) hh 1h+f 1 0,1,... a + -

16.24) Uh - Yh 
+  

' h Yh' then uh  satisfies

(6.25) "Dh%- 8h(Ahuh) + ')h(Ah'fh)

-22-
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Because of zema (6.15) ve obtain that luhs h - O(C) holds. We define 7h by

S i dh
(6.26) vi, K l~ (t +__-) ,I1q ee.,o

for m positive a less than min(,c
1
). h  satisfies

6 *

(6.27) h " 0 *S 8(&h
4 'phhc ) , p 1 (1 h -r) : 1(I)q, i - 0.1..

Because of (6.20) IPh'h'h " '14 holds. 60 vh  is bounded and therefore (6.22) holds.

(6.26) Tamas Let the operator associated with the problem

(6.29) h ",( Ch'% Yh *s''oo* ' Y"

have a uniformly bounded inverse i.e. let Ihh 4 C16(I11 + Ih) hold for some

constant 016" (Here s h  and Yr denote vector grid functions of dimension a. . nl

* and Ch  are of appropriate dimensions.) Let the a-dimensional vectors fh satisfy

Ifil• I C1?te-jt + Is 1), j - O(1)q, I - O(1)6

(6.30) L c1 8h -1 + W-1 c 18 hr -1(6.30)~ ~ (i". I + e 
j 

- I(1q, al - Al (I +"- )

r-O CL.e

j - 0(1)q-1, i * 0(t)1-1

for some positive constants 017 and c1. Then the solution th  of

(6.31) D sh.- Ch + fh) . *. N(s 0 0 ., 0 ) - £ satisfies

(6.32) Izhl h 4 c 19iC(lI + c 2 0 )

for some positive c1g independent of c.

(6.36) Loms Let L be defined as in (3.3). Let the coefficient matrices ij

satisfy (3.5). Assume that the operator associated with the reduced problem (3.7) has a

uniformly bounded inverse, i.e. that there exists a constant c22 so that

(6.37) I(Yhhlh c221LhlYhzh)Ih + Ic;%)1)

holds for all grids T.. Then there exists a solution (yh.sh) of the problem

(6.3) (,Sf') " F -" y0 , " ,•" y)

for all (n+a)-deminsional vectors 0 - (0*-I, 2) and all grid functions * yh" h)

satisfies

-23-
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(6.39) * (yh'sh) c c23C (101 + ' h

for a Positive Constant 023 independent Of C.

Proof, Let the n x n matrices Th be defined by

CD (T S{C(A II) - + A12- 0,(

hIs h h hs h Is 0 00~

(6.40)
% ( (T+ + 14(y4 124 + 0 +C )

Wh(Th? + 1+h) % ) -0 (TO -0

(Hecre T((h 1 % +A an T +s(% ( 12 denote the first n- and last n, rowe

h h 11 -1 -12
of Th hIA1 Because of i..ma (6.19) satisfies Th Is (A ) h (A Is4.+ .+ Ow

and

i IKh~ -1 IC1)q KhI( d -1
IT JI (C a(1 + -) ,q IT 1 4 a (I +

(6.41) r-0 £j r-

j - 0(1)q-1 i - 0(1)1-1

We define uh - Yh-Thzh and obtain

£D t . St(A 11 % + #t . h S~ I (Al ±T± + (A12± )D a0Tt
ij'b ijhn ij i ii h h h Ish h ii ii h

(6.42 21~ - +A
22 

-21 11 -1 12 0 21^ + 0
(6.42 D h h - h % h + ( h -Ah (A ) h A h )zI ) S h (% Th Ih)+

- + . 11 - 1 12 - -R
As00 . oaN "~ Oil BRCCA ) h A h z h' zh) B 2 -B(T h.Uhh

So for C and H sufficiently small (6.42) can be solved by using contraction and (6.39)

holds.

With the aid of Loa (6.36) we now construct the general solution of

L Ch (y h -h *I i.e. a solution which depends on (n4.u) free parameters. We start with

the homogenous problems

(6.43) Lemmas Let the assumptions of Lemma (6.36) hold. Then there exist solutions

(IsIzI),(V.hI3 h) of the problems

L Cy~ h ,( -0 N % - 04

1< ~~~~(6.44) £ ~)-0 y 0  1

L Ch y~.~ h 0 C 0) - 0, (y~ 0
4 

00 -N zo"0

for any n dimensional parameter vector n~ (ni In1) For any constant K c2

-24-
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(where 23is defined as in 1am.a (6.36) there exists a PdK) so that

I (y L 14Xr In =POi, 1(1q

(6.45)

MCy" 3" + Is L 1 Kooc I? I lin (CP(, i-1, s4, j 01q-1

(6.46 r( + 1 4 K(K) In UIP(i,H-1ps). j - 0, It q-1

m(y )-,z )I -C K(K) In+ lain (C,P(i+ 1,N-1, ic), M =

I ach -1iiP(kL a) A (I +4 r

holds independent of c.

Proofs we define u~ - (Y )-P(.ic)- 1 jj v . =POi,)I 101)q,

I + -
W j (' i)P0 i-I' * j - (lq-1, i - 0(1-. Then eh nd vh satisfy

(6.47) CDu 12Ab~h

(6+ +D -1 3 + V+ + 1241Id i_
(.8 EDij uh Sij % ) uh +" ) '1hvh3 + CO + ui

CD KiO+CS0 21 22 2

(6.9) ijvh ='i ij (% Dhllh + %h %h)

(6.49) 00 No 'V' k0 - 0

- (1O + Ch t 1M 1q-1, d 0O I 1 - 1, j - (I)q

d 1+hk diaq((d )...O. 1 , ( 2) ( ) )
iC C ij i ij di di

(To derive (6.48) the equations w + u ied + +,-.
jk q,q-k q-j,q-k- s 'jk ' q,q-k 'q-j~q-k

have to be used.) Since ws can look at (6.49) as a perturbation of the explicit Nailer-

*scheme the terminal value problem for (6.49) is stable. Thus we obtain (using a

perturbation argument for (6.47) end (6.48)) that I(%v) cosii holds if K is

lae c23 (where 023 is defned as in Lemme (6.36)). Because of Lemme (6.28)

-25-



Ish Ih 0( ) holds and therefore I(Yh)+lh in also of order 0(c). Therefore (6.45)

holds. (6.46) is proved analogously.

Proof of Theorem (3.1011 To complete the construction of the general solution of

L Ch (yhz )h 4 h we first define a solution (yh*3h of the Lnhoamogeneous problem which

depends on the m-dimensional free parameter vector 31

(6.52) L h(y h'h) = #h ' (;001" - 0' (;.0)+ - 0' t'h';h -

Let (yhah), (y z ). n' be defined as in Lama (5.45). Then (yhy h+ )

is the general solution of L (yhh )  To prove the existene of a oluton of (3.6)

and the stability of the associated operator we show that the equation, which arises when

we insert the general solution in the boundary conditions (3.4) is soluble. We obtain

8 11(n+ ) + B12(00'No'oo' 0 ) + O(elvl,1+I) 1

(6.53)

This system is invertible and the norm of the inverse is bounded uniformly in C. So there
exists a constant c 24  such that t(nn',n) < 2,111 holds. Therefore I(Yhn'h ) 1

const(IOI + Ifhl h ) holds independent of e and the grid T3 -

(6.54) Proof of Theorem (4.15): We start with constructing an 0(c) approximation of the

solution of (3.1k: Let (Yh'h) ) h" and (yh bsh 'e defined by

(6.55) % yh 0, b (yh';h) 0, CD hy - f ~h

)h ;h 8hlfI(th'zh)Yh)

(00)0 1.. ,) 2 .no b2 ( 0 0 '%0' 0,0,0))

0 + 0SYh + h Yh' s

Here V and W are defined as in (2.7). Because of (2.4) there exists a solution of
00S(5.55). Lot %h  and vh  be defined by 'h ' yh-Yh, v h -Zh-&:. Then uh  and vh

-26-
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satisfy

-j ' hij y h)h + s %)h)h 3 (1h'Th1  
'

+h ) + U2(Uh) + @(¢ +hy h )

h 3 & hh h 4(u'"h + ( ""h)'h) 0

Mor 1 20 2 )1

ere d denotes (th'yhSh'). B L(Uh,v h ) satisfies .(U .lhY) - vh

c (% 1h ,hVh)in, 9i(OO) - 0 , £ 1(1)4, for sme constant

independent of C. Because of Theorem (3.10) we can now use nonlinear ?tcard- teratoa

starting with (uh vh ) - (0,0) to show the existence of a solution of (3.1). No obtain

%lYh yh h hl - 0(C) since the first step of the iteration is of order 0(c). Keller

(1975) shown, that if a nonlinear operator has a LLpschits continuoua linearization within

a sphere R 0 0 then the operator is stable in a sphere 1K ((yho,41) .nd pand00 ((%h,4))1

the stability constant depend only on the Lipechitz constant and the norm of the inverse of

the linearization of the operator at (yhh
t lt

(6.57) Proof of Theorem (4.18)s Let Yo(t), z0 (t), q). VO(j) -  be defined as in (2.1),

(2.2) and let (;h';h) T h be defined an above. Since (5.5S) is the discrete counterpart

of the reduced problem and we use a method of order (q+1) we obtain

(6.53) ,,',.'h# 3 - (y o(th., a 0(th)) - 0(3

by using (2.7) and standard arguments. because of Lina (5.19) we obtain for R

sufficiently small

(G..) 1 < coast 1 ( -- ) - ,()q, , . onat , (, -), 1-0,q-,.

.4 . 1 0 0 ;

Botimating I,.00 + t)~)I b (k~)(nt)s~?
* I J'ij'ij' (oitjb'o~t3) y'Y')sY~h'Ot) ~i;j'

~oil0(tij)I + I VO(ti3)I gives the result.
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1. t- --

(6.60) Proof of Lemma (3.22). Let (y( thle).s(th#c)W denote the solution of 01.1)

restricted on the grid T,,. Then we have

(6.61) CD ijy(th.5) - 0 i

If we interpolate y'(tio+his, ) at u1D*,uq by a polynomial of degree q-1 (which is

inertdFxcl by S) and use the formula for the remainder term of polynomial

intrplaio oea get(q1)

(6.62) (tYq y ~ ti
ti ti+t)

+ q (+,) l~q+2)Similarly we get My4 I - O(chf( l) 1) 32 1 - 0(h 1 I. it
1

follows from the asymptotic expansion (2.1), (2.2) that y(crel), z (q-2) satisfy

-t t-

(l (q+2) e £(- expU.+ -)
(6.63) (tt), (t~c))l < const(i + C

(6.64) Proof of Theorem (4.25)t Eat ytt,e) be defined by

(6.65) Cy' - A(t,3 0 (s)y 0 (0c (0), y (t'C) - VOo)

where to po are defined as in (2.1). As it is easy to show y, Va and v satisfy

110-o1I(0,I) - 4),l V 1 (0.1)0() - 0(0). Eat now yhand sh be defined as in the

proof of Theorem (4.15). Since Is h~z0 (t hPC)lh - (H q+1 holds and the initial and

terminal value problems in (5.55) for ;h are stable we obtain

h -Y th ~ h 0s(1h;(thF)'h +
(6.66) q (t~)

+ max(Ch I y ' I tl +) :i - 0(1)3-1) - 0(s)

if we choose the mesh according to (3.24). Sumarizing (6.65) and (6.66) we obtain that

0 - (y 0 #) zo ~c))§h - (C96) holds, where (y 0*z 0 ) is defined as in Theorem

(3.18). Therefore 1(y h,%) - (Y(t C), aft hoc) M- 0(e+6) holds. So for c and 6

sufficiently small (y(t lc)z(t Wc) lies within the ball R (Yh'h~ 2 Sow a pl

Theorem (3.15) and obtain that "yh'%) - (Y(thn)e zlt.))# at const 8holds independent of

C.

-29-

-WWI-



iAt

Proof of Theorem (4.27), He choose hi -~ gjl xp(- ' as long as h i 6 holds i. 0.

4; q f j - lih' t1 A
long as t , ml() holds. y setting h1  Step I in (4.25) becomes

- i A C C q

Choose hi . ase as long as t ( -!) holds. (with a s-L.) Given c.and a
C q

assume that we would need M points, i.e. %i 3 In T holds. If we add 1 point t"+ 10 0

+n(" exp(- ) . Therefore *+I is the number of points we would need to solve the same
a_0 0

problem with el " ce Computing the sequnce 1 - C exp(- -- ) shows that for
a > 10 .  

it decrease* from c - 10 .  
to C - 10 - 1  

in 3 stops. n

To obtain esimate (4.29) we state

1

-9 + ~ -

holds.o
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